## (#11-2 #11-1)

## Modeling and determining equilibrium of solubility

A salt KOH is dissolved by the following reaction.

K+ + OH-1 ⇔ KOH €

a. Write out the equilibrium expression
b. What happens to the value of K if this substance is really soluble?

A salt KOH is dissolved by the following reaction.

KOH 
$$\Leftrightarrow$$
 K<sup>+</sup> + OH<sup>-1</sup> KSQ<sup>-</sup>  $(K^{-1})$  C  $(K^{-1})$ 

- a. Write out the equilibrium expression.
- b. What happens to the value of K if the substance is really soluble. 7 Bin



Time

To allow K to correspond with solubility, industrial scientist who created this method chose to always write the dissolving reaction with the solid on the left as see below.

 $KOH(s) \Leftrightarrow K^+(aq) + OH^{-1}$  To distinguish this method they gave it a special name "solubility product"

$$Ksp = [K^{+}][OH^{-1}]$$

You take a sample of salt (table) and you start to dissolve it in water. You continue to add and stir the solution. After a period of time it appears solid is forming on the bottom.

Write the (Ksp) solubility equation. Nacl - Nat -

This chemical reaction goes to (completion/equilibrium).

To the right draw a picture of table salt dissolving. The reaction gets saturated at time X.

A student hypothesizes that stirring increases solubility. Confirm or counter this statement.



How might you increase the solubility of table salt in water.





A student dissolved Ag<sub>2</sub>SO<sub>4</sub> in 100mL of water. The student added 5g of silver sulfate to the solution and measured the concentration of SO<sub>4</sub>-2 to be 0.0135M and solid is on the bottom. Answer the following questions.





a. Draw the beaker.
b. Based on your picture, if the 
$$504^2 = 0.0135$$
, what is the [Ag<sup>+</sup>]?





Two salts are dissolving, AgBr (Ksp = 5E-13) and AgCl (Ksp = 1.6E-10), Answer the following questions.

A student comes across a solution that is saturated solution of lead(II) chloride. The lead ion has a concentration of 1.5E-5M. Answer the following questions.

b. Write out the solubility equilibrium expression.

- c. Draw a picture of this reaction mixture.
- d. What is the concentration of the Chloride ion?

e. What is the equilibrium constant for this reaction?





